KALIBRASI PERALATAN NAVIGASI
PENERBANGAN DALAM MENGANTISIPASI
KESELAMATAN PENERBANGAN

Oleh: Rosidin Samsudin *)
*) Pusat Penelitian dan Pengembangan Perhubungan Udara
Jl. Merdeka Timur No. 5 Jakarta 10110 Telp. (021) 34832944 Fax. (021) 34832968
e-mail : litbang_udara@yahoo.co.id

ABSTRACT

Flight safety is a major factor that needs attention not only from the government as a regulator but the organizers airport as infrastructure providers, and airlines as the airport service users.

Facilities/ flights operated navigation equipment at the airport for flight navigation services shall be calibrated periodically to keep it operating feasibility (accurate). Facilities / aviation navigation equipment consists of telecommunications facilities, aviation, aeronautical information facilities and amenities aviation meteorological information.

Keywords: calibration, facilities, equipment flight.

PENDAHULUAN
Latar Belakang

Dalam industri jasa transportasi udara, keselamatan penerbangan merupakan faktor utama yang perlu mendapat perhatian baik dari pemerintah sebagai regulator maupun pihak penyelenggara bandar udara sebagai penyedia prasarana, dan perusahaan penerbangan sebagai pengguna jasa kebandarudaraan. Ketiga unsur tersebut memegang peranan strategis dalam mewujudkan pelayanan dan keselamatan transportasi udara.

Keselamatan penerbangan merupakan tujuan utama dalam penyelenggaraan penerbangan yang penyelenggaraannya diuasai oleh negara dan pembinaannya dilakukan oleh pemerintah dalam satu kesatuan sistem pelayanan keamanan dan keselamatan penerbangan sipil. Pembinaan yang dilakukan oleh pemerintah meliputi penyelidikan perumusan kebijakan, standar, norma, pedoman, kriteria, sistem dan prosedur, sertifikasi, pengawasan, pengendalian penegakan hukum/tindakan korektif serta evaluasi dan pelaporan di bidang manajemen lalu lintas penerbangan (AirTraffic Management/ATM), informasi aeronautika, komunikasi penerbangan, fasilitas bantu navigasi dan pengamatan penerbangan serta standarisasi dan sertifikasi navigasi penerbangan.

Dalam Undang-undang Nomor 1 Tahun 2009 tentang Penerbangan pada Pasal 299 disebutkan mengenai fasilitas navigasi penerbangan yang dioperasikan untuk pelayanan navigasi penerbangan wajib dikalibrasi secara berkala agar tetap laik operasi. Penyelenggara pelayanan navigasi penerbangan yang melanggar ketentuan dikenakan sanksi administratif berupa pembekuan izin. Penyelenggaraan kalibrasi fasilitas navigasi
penerbangan dapat dilakukan oleh pemerintah dan/atau badan hukum yang mendapat sertifikat dari Menteri.

Kecelakaan yang menimpa pesawat Adam Air pada bulan Februari Tahun 2006 sewaktu menjalani penerbangan dari Bandara Soekarno Hatta tujuan Bandara Sultan Hasanuddin di Makassar, pesawat Adam Air terbang dengan sistem navigasi yang tidak berfungsi menyebabkan pesawat berputar-putar di udara tanpa tahu arah selama tiga jam, sebelum akhirnya mendarat darurat di Bandara Tambulaka Nusa Tenggara Timur, akibat tidak berfungsi nya sistem navigasi adalah kesalahan yang fatal dalam dunia penerbangan.

Pesawat Garuda Indonesia terpaksa mambatalkan melakukan landing di Bandara Sam Ratulangi pada tanggal 15 April Tahun 2010 dengan alasan peralatan navigasi penerbangan di bandar udara tersebut belum dikalibrasi ulang (overdue), kalaunya alatnya tidak akurat dapat membahayakan penerbangan dan keselamatan penumpang.

Rumusan Masalah

Mengingat pentingnya peralatan navigasi penerbangan terhadap keselamatan penerbangan, maka rumusan masalah adalah apakah peralatan navigasi penerbangan yang berada di Bandara Soekarno-Hatta telah dikalibrasi sesuai ketentuan yang berlaku dalam meningkatkan keselamatan penerbangan.

Tujuan dan Kegunaan Penelitian

Tujuan penelitian ini adalah mengevaluasi pelaksanaan kalibrasi peralatan navigasi penerbangan di Bandara Soekarno-Hatta.

Kegunaannya adalah meningkatkan keamanan dan keselamatan penerbangan di Bandara Soekarno-Hatta.

Ruang Lingkup

1. Inventarisasi peraturan perundang-undangan yang terkait dengan penelitian;
2. Inventarisasi dan identifikasi peralatan/fasilitas navigasi penerbangan yang di kalibrasi;
3. Inventarisasi dan identifikasi jenis pesawat udara kalibrasi yang beroperasi;
4. Analisis;
5. Rekomendasi.

BAHAN DAN METODE

Dasar Hukum

1. Pengertian/Difinisi

- Kalibrasi adalah serangkaian kegiatan yang membentuk hubungan antara nilai yang ditunjukkan oleh instrumen ukur atau sistem pengukuran, atau nilai yang diwakili oleh bahan ukur, dengan nilai-nilai yang sudah diketahui yang berkaitan
dari besaran yang diukur dalam kondisi tertentu. Dengan kata lain, kalibrasi adalah kegiatan untuk menentukan kebenaran konvensional nilai penunjukan alat ukur dan bahan ukur dengan cara membandingkan terhadap standar ukur yang mampu telusur (traceable) ke standar nasional untuk satuan ukuran dan/atau internasional. (ISO/IEC Guide 17025:2005) dan Vocabulary of International Meteorology (VIM)

- **Instrument Landing System (ILS)** adalah peralatan navigasi penerbangan yang berfungsi untuk memberikan sinyal panduan arah pendaratan (azimuth), sudut luncur (glide slope), dan jarak terhadap titik pendaratan serta presisi pada pesawat udara yang sedang melakukan pendekatan dan pendaratan di landas pacu pada bandar udara (SNI 03-7050-2004).

- **Non Directional Beacon (NDB)** rambu udara tak terarah adalah fasilitas navigasi penerbangan yang bekerja dengan menggunakan frekuensi rendah (low frequency) dan dipasang di dalam atau di luar lingkungan bandar udara sesuai fungsiya (SNI 03-7041-2004).

- **Distance Measuring equipment (DME)** adalah alat bantu navigasi penerbangan yang berfungsi untuk memberikan panduan/informasi jarak (slant range distance) bagi pesawat udara dengan fasilitas DME yang dituju (SNI 03-7050-2004).

- **Very high frequency Omnidirectional Range (VOR)** adalah fasilitas navigasi penerbangan yang bekerja dengan menggunakan frekuensi amat tinggi (very high frequency) dan dipasang di dalam atau di luar bandar udara sesuai dengan fungsiya (SNI 03-7050-2004).

- Radar adalah suatu alat deteksi radio yang memberikan informasi tentang jarak, arah dan/atau elevasi (ketinggian) dari benda-benda (objects). Pengertian dan Istilah Penerbangan Sipil.

- **Precision Approach Path Indicator Lights (PAPI/VASI)** merupakan salah satu alat pendaratan visual yang berfungsi memandu pesawat udara yang akan mendarat dengan memberikan sudut pendaratan yang tepat kepada pesawat udara. (Surat Keputusan Direktur Jenderal Perhubungan Udara Nomor SKEP. 113/VI/2002).

Peraturan Internasional

a. CASR 135 (Peraturan Keselamatan Penerbangan Sipil).

Peraturan Nasional

Undang-undang Nomor 1 Tahun 2009 tentang Penerbangan, pada Pasal 296 menyatakan Ayat (1) fasilitas navigasi penerbangan terdiri atas: a. fasilitas telekomunikasi penerbangan; b. fasilitas informasi aeronautika; dan c. fasilitas informasi meteorologi penerbangan. Ayat (2) fasilitas navigasi penerbangan sebagaimana dimaksud pada ayat (1) yang akan dipasang dan dioperasikan harus mendapat persetujuan Menteri. Pasal 297 menyatakan pemasangan fasilitas navigasi penerbangan sebagaimana dimaksud dalam Pasal 296 Ayat (1) harus memperhatikan: a. kebutuhan operasional; b. perkembangan teknologi; c. keandalan fasilitas; dan d. keterpaduan sistem. Pasal 298 menyatakan (1) fasilitas navigasi penerbangan sebagaimana dimaksud dalam Pasal 296 Ayat (1) wajib dipelihara oleh penyelenggara pelayanan navigasi penerbangan sesuai dengan ketentuan yang berlaku. (2) penyelenggara pelayanan navigasi penerbangan yang melanggar ketentuan sebagaimana dimaksud pada Ayat (1) dikenakan sanksi administratif berupa: a.
peringatan; b. pembekuan izin; dan/atau c. pencabutan izin. Pasal 299 Ayat (1) Fasilitas navigasi penerbangan sebagaimana dimaksud dalam Pasal 296 Ayat (1) huruf a yang dioperasikan untuk pelayanan navigasi penerbangan wajib dikalibrasi secara berkala agar tetap laik operasi. Ayat (2) Penyelenggara pelayanan navigasi penerbangan yang melanggar ketentuan sebagaimana dimaksud pada Ayat (1) dikenakan sanksi administratif berupa pembekuan izin. Pasal 300 menyatakan penyelenggaraan kalibrasi fasilitas navigasi penerbangan sebagaimana dimaksud dalam Pasal 299 Ayat (1) dapat dilakukan oleh pemerintah dan/atau badan hukum yang mendapat sertifikat dari Menteri.

Peraturan Pemerintah Republik Indonesia Nomor 3 Tahun 2001 tentang Keamanan dan Keselamatan Penerbangan. Pasal 5 Ayat (2) menyatakan Pelayanan navigasi penerbangan, meliputi kegiatan: pelayanan navigasi penerbangan terhadap pesawat udara selama dalam pengoperasian; pengendalian ruang udara; membantu pencarian dan pertolongan kecelakaan pesawat udara dan/atau membantu penelitian penyebab kecelakaan pesawat udara; penyelesaian dan/atau pembinaan personil; penyediaan dan melakukan pemeriksaan sarana dan prasarana navigasi penerbangan. Ayat (3) Penetapan persyaratan teknis dan operasional pelayanan navigasi penerbangan dilakukan dengan memperhatikan: keamanan dan keselamatan penerbangan; perkembangan teknologi; sumber daya manusia yang profesional; ketentuan-ketentuan internasional; efektivitas dan efisiensi; kawasan udara terlarang, terbatas dan berbahaya; keandalan sarana dan prasarana pelayanan navigasi penerbangan; keteraturan, kesinambungan dan kelancaran arus lalu lintas udara.

Surat Keputusan Direktur Jenderal Perhubungan Udara Nomor SKEP/113/VI/2002 tentang Kriteria Penempatan Fasilitas elektronika dan Listrik Penerbangan, huruf b

265 Jurnal Penelitian Perhubungan Udara Vol.36 No.3, September 2010
navigasi dan pengamatan penerbangan terdiri dari : NDB, VOR, DME dan Raddarden huruf c peralatan bantu pendaratan terdiri dari ILS dan PAPI.

Metode Analisis
Metode pengumpulan data :
Untuk dapat menganalisis permasalahan, terlebih dahulu melakukan identifikasi dan inventarisasi data yang dibutuhkan, pengumpulan data dilakukan dengan wawancara, data primer dan data sekunder serta hasil penelitian/studi yang terkait, studi literatur/kepustakaan.
Metode analisis :
Metode analisis yang digunakan adalah deskriptif kualitatif dengan data dan informasi yang diperoleh dari penyelenggara Bandara Soekarno-Hatta.

HASIL PENELITIAN DAN PEMBAHASAN
Hasil Penelitian
1. Profil Bandara Soekarno-Hatta
Bandara Soekarno-Hatta terletak di Propinsi Banten, Kota Tangerang dan merupakan salah satu pintu gerbang internasional, bandar udara ini mempunyai 2 (dua) terminal penumpang yaitu Terminal I dengan luas 125.000 m² dan Terminal II dengan luas 151.308 m², Kedua terminal tersebut mempunyai kapasitas penumpang sebesar 18 juta penumpang per tahun. Terminal I dioperasikan pada Tahun1985 dan Terminal II dioperasikan pada Tahun 1992.
Operasional suatu bandar udara, harus didukung oleh fasilitas yang pada dasarnya dibedakan dalam 3 (tiga) bagian pokok yaitu :
 a. Bagian sisi udara (air side), meliputi landasan pacu (runway), taxiway dan apron.
 b. Bagian sisi darat (land side), meliputi bangunan terminal penumpang dan terminal kargo, serta tempat parkir kendaraan, termasuk sistem utilitasnya.
 c. Element penunjang, adalah elemen dalam pengoperasian suatu bandar udara yang meliputi bangunan operasional, PKP-PK, DPPU Pertamina (depo pengisian bahan bakar pesawat udara), dan sebagainya.

Kondisi eksisting dari fasilitas sisi udara yang ada di Bandara Soekarno-Hatta mempunyai klasifikasi sebagai berikut :
 a. Landasan pacu atau runway mempunyai 2 (dua) landasan pacu paralel dengan jarak 2.400 m yang dihubungkan dengan landasan penghubung silang. Landasannya termasuk katagori bebas, sehingga dapat dioperasikan secara simultan.
 Bagian selatan : R/W 07R/25L : 3.660 m x 60,
 Bagian utara : R/W 07L/25R : 3.660 m x 60 m.
 b. Taxiway, merupakan fasilitas penghubung antara landasan dengan apron, digunakan untuk pesawat yang akan menuju/meninggalkan apron, berukuran luas 2.400 m².
 c. Apron merupakan tempat berhentinya pesawat/parkir pesawat dalam keperluan bongkar muat penumpang dengan konstruksi beton aspal.
 d. Lapangan untuk fasilitas/peralatan ground handling.
2. Fasilitas/peralatan navigasi penerbangan dan jadwal pelaksanaan penerbangan kalibrasi.

<table>
<thead>
<tr>
<th>NO</th>
<th>BANDARA</th>
<th>FASILITAS</th>
<th>CALL SIGN</th>
<th>JADWAL KALIBRASI</th>
<th>KET.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LASTEST</td>
<td>NEXT</td>
</tr>
<tr>
<td>1.</td>
<td>SOEKARNO HATTA</td>
<td>ILS</td>
<td>ICGR</td>
<td>31-Mar-10</td>
<td>31-Aug-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ICGL</td>
<td>3-Apr-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ICHR</td>
<td>10-Apr-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ICHL</td>
<td>7-Apr-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VASI/PAPI</td>
<td>R/W 25R</td>
<td>2-Apr-10</td>
<td>2-Sep-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R/W 25L</td>
<td>30-Mar-10</td>
<td>30-Aug-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R/W 07R</td>
<td>9-Apr-10</td>
<td>9-Sep-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R/W 07L</td>
<td>7-Apr-10</td>
<td>7-Sep-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DVOR/DME</td>
<td>DKI</td>
<td>16-Dec-09</td>
<td>16-Jun-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CKG</td>
<td>16-Dec-09</td>
<td>16-Jun-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IMU</td>
<td>27-Jan-10</td>
<td>27-Jul-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NTA</td>
<td>18-Jun-10</td>
<td>18-Apr-ll</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LOCATOR</td>
<td>CR</td>
<td>7-Dec-09</td>
<td>7-Dec-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CL</td>
<td>26-Jul-09</td>
<td>26-Jul-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GR</td>
<td>22-Nov-09</td>
<td>22-Nov-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NDB</td>
<td>GL</td>
<td>3-Dec-09</td>
<td>3-Dec-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PW</td>
<td>27-Jan-10</td>
<td>27-Jan-ll</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RADAR</td>
<td>CA</td>
<td>II-Feb-09</td>
<td>II-Feb-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RN</td>
<td>18-Jun-10</td>
<td>18-Sep-ll</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BSH</td>
<td></td>
<td>on request</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NATUNA</td>
<td></td>
<td>on request</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SMG</td>
<td></td>
<td>on request</td>
</tr>
</tbody>
</table>

Sumber: PT (Persero) Angkasa Pura II, Th. 2010

3. Perusahaan angkutan udara yang beroperasi di Bandara Soekarno-Hatta

Rute penerbangan domestik di Bandar udara Soekarno-Hatta dilayani oleh perusahaan penerbangan yaitu: Garuda Indonesia, Lion Air, Sriwijaya Air, Batavia Airlines, Indonesia Air Asia, Mandala Airlines, Wings Air, Merpati Nusantara, Airfast Indonesia, Express Air, Garuda City Link, Kartika Airlines, PT. Republik Express Airlines, Trevel Aviation Service, Trigana Airlines dan Top Air.

4. Pesawat Udara Yang Dioperasikan Berdasarkan Tipe Pesawat

Tipe pesawat udara yang beroperasi di Bandara Soekarno-Hatta dapat dilihat pada tabel berikut.
Tabel 2
Tipe Pesawat Udara Yang Beroperasi di Bandara Soekarno-Hatta
Tahun 2009

<table>
<thead>
<tr>
<th>NO.</th>
<th>TIPE PESAWAT</th>
<th>JUMLAH PERGERAKAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B 737-300</td>
<td>56.883</td>
</tr>
<tr>
<td>2</td>
<td>B 737-400</td>
<td>51.231</td>
</tr>
<tr>
<td>3</td>
<td>B 737-200C</td>
<td>33.872</td>
</tr>
<tr>
<td>4</td>
<td>B 737-900ER</td>
<td>17.472</td>
</tr>
<tr>
<td>5</td>
<td>A 320-200</td>
<td>11.092</td>
</tr>
<tr>
<td>6</td>
<td>MD 82</td>
<td>6.304</td>
</tr>
<tr>
<td>7</td>
<td>B 737-500</td>
<td>6.192</td>
</tr>
<tr>
<td>8</td>
<td>A 319-200</td>
<td>5.619</td>
</tr>
<tr>
<td>9</td>
<td>MD 90-30</td>
<td>5.115</td>
</tr>
<tr>
<td>10</td>
<td>A 319-100</td>
<td>2.124</td>
</tr>
<tr>
<td>11</td>
<td>A 330-300</td>
<td>1.819</td>
</tr>
<tr>
<td>12</td>
<td>BEECH 1900C</td>
<td>1.748</td>
</tr>
<tr>
<td>13</td>
<td>B 737-800</td>
<td>1.264</td>
</tr>
<tr>
<td>14</td>
<td>A 300-300</td>
<td>472</td>
</tr>
<tr>
<td>15</td>
<td>FOKKER-100</td>
<td>341</td>
</tr>
<tr>
<td>16</td>
<td>B 747-400</td>
<td>131</td>
</tr>
<tr>
<td>17</td>
<td>MD 90-10</td>
<td>105</td>
</tr>
<tr>
<td>18</td>
<td>Lain-lain</td>
<td>97</td>
</tr>
<tr>
<td>19</td>
<td>B 737-100</td>
<td>43</td>
</tr>
<tr>
<td>20</td>
<td>B727-200F</td>
<td>4</td>
</tr>
<tr>
<td>21</td>
<td>B 747-300 COMBI</td>
<td>3</td>
</tr>
</tbody>
</table>

Sumber: Statistik PT. Angkasa Pura II (Persero)

5. Sarana dan Prasarana Balai Kalibrasi Fasilitas Penerbangan
 - Hanggar seluas 2700 m2 untuk perawatan pesawat udara dan perkantoran.
 - Ground Support Equipment serta bench test untuk pengcekan alat elektronik.
 - Workshops (bengkel) untuk perbaikan alat-alam mekanikal maupun elektronis sebagai pendukung kegiatan penerbangan kalibrasi.

Fasilitas/peralatan utama berupa pesawat udara kalibrasi yang dimiliki oleh Balai Kalibrasi Fasilitas Penerbangan sebagai berikut.

Tabel 3
Sarana Utama Pesawat Udara Kalibrasi

<table>
<thead>
<tr>
<th>NO</th>
<th>JENIS</th>
<th>TIPE</th>
<th>TAHUN PEMBUATAN</th>
<th>JML</th>
<th>KETERANGAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Twin Engine Turboprop</td>
<td>Learjet 31a</td>
<td>BOMBARDIER USA 1994</td>
<td></td>
<td>Beroperasi</td>
</tr>
<tr>
<td>2</td>
<td>Twin Engine Turboprop</td>
<td>KA B200C</td>
<td>Beech Hawker USA 1993</td>
<td>2</td>
<td>Tidak beroperasi karena perbaikan landing gear</td>
</tr>
<tr>
<td>3</td>
<td>Single Engine Turboprop</td>
<td>TBM 700</td>
<td>SOCATA EADS PERANCIS 1996</td>
<td>2</td>
<td>Beroperasi</td>
</tr>
</tbody>
</table>

Sumber: BKFP
Balai Kalibrasi Fasilitas Penerbangan dalam pelaksanaan inspeksi penerbangannya menggunakan fasilitas/peralatan sebagaimana terlihat pada tabel berikut.

Tabel 4

<table>
<thead>
<tr>
<th>NO</th>
<th>MERK</th>
<th>TAHUN PEMBUATAN</th>
<th>JML</th>
<th>TIPE</th>
<th>KETERANGAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Litton Flight Inspection System</td>
<td>1994</td>
<td>2</td>
<td>Fixed</td>
<td>Learjet 31a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>* Kondisi rusak</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>* Pabrik pembuat sudah tutup</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>* 1 unit digantikan dengan console merk Aerodata.</td>
</tr>
<tr>
<td>2</td>
<td>Hunting Flight Inspection System</td>
<td>1996</td>
<td>2</td>
<td>Portable</td>
<td>King Air B200 atau TBM 700</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>* Penurunan kinerja.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>* Pabrik pembuat sudah tutup</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>* Ketersediaan spare part sangat sulit didapat.</td>
</tr>
<tr>
<td>3</td>
<td>Aerodata Flight Inspection System</td>
<td>2008</td>
<td>1</td>
<td>Fixed</td>
<td>Learjet 31a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Baru untuk menggantikan 1 unit console Litton.</td>
</tr>
<tr>
<td>4</td>
<td>Aerodata Flight Inspection System</td>
<td>2009</td>
<td>1</td>
<td>Fixed</td>
<td>King Air B200GT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Diserahkan terimakan kepada BKFP akhir tahun 2009.</td>
</tr>
</tbody>
</table>

Sumber: BKFP

Sumber daya manusia atau tenaga ahli yang dimiliki oleh Balai Kalibrasi Fasilitas Penerbangan sesuai dengan keahlian dapat dilihat pada tabel berikut.

Tabel 5

<table>
<thead>
<tr>
<th>Tenaga Ahli</th>
<th>Jumlah (Saat Ini)</th>
<th>Jml Ideal (Sesuai CASR)</th>
<th>Komposisi Crew Tiap Operasi Kalibrasi</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilot in Command</td>
<td>2</td>
<td>24</td>
<td>1</td>
<td>1 Pesawat terdapat 3 set Crew untuk operasional penerbangan kalibrasi (CASR 135)</td>
</tr>
<tr>
<td>First Officer (FO)</td>
<td>3</td>
<td>24</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Engineer</td>
<td>6</td>
<td>20</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Panel Operator</td>
<td>6</td>
<td>8</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(Flight Insp)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theodolit Operator</td>
<td>7</td>
<td>8</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Asumsi/perkiraan beban kerja pelaksanaan kalibrasi setiap peralatan dan periode pelaksanaan kalibrasi dapat dilihat pada tabel berikut.

<table>
<thead>
<tr>
<th>Tenaga Ahli</th>
<th>Jumlah (Saat ini)</th>
<th>Jmi Ideal {Sesuai CASR}</th>
<th>Kornposisi Crew Tiap Operasi Kalibrasi</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>16</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Jumlah</td>
<td>29</td>
<td>88</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Setiap bandar udara pada umumnya memiliki fasilitas/peralatan navigasi penerbangan untuk pelayanan penerbangan, PT Angkasa Pura I (Persero), PT Angkasa Pura II (Persero), Unit Pelaksana Teknis (UPT) Direktorat Jenderal Perhubungan Udara dan perusahaan swasta adalah sebagai berikut.

<table>
<thead>
<tr>
<th>Peralatan</th>
<th>Asumsi Waktu Kalibrasi (Jam)</th>
<th>Periodisasi Cal. (FIM 1978)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOR/DME</td>
<td>2.0</td>
<td>180 hari</td>
</tr>
<tr>
<td>ILS</td>
<td>4.0</td>
<td>120 hari</td>
</tr>
<tr>
<td>VASI / PAPI</td>
<td>1.0</td>
<td>Menyesuaikan Alat Utama</td>
</tr>
<tr>
<td>NDB</td>
<td>1.0</td>
<td>360 hari</td>
</tr>
<tr>
<td>RADAR</td>
<td>6.0</td>
<td>360 hari</td>
</tr>
</tbody>
</table>

Tabel 7
Peralatan Navigasi Penerbangan yang Dimiliki AP I, AP II, UPT dan Swasta Tahun 2009

<table>
<thead>
<tr>
<th>Nama Alat</th>
<th>UPT (190 Bandara)</th>
<th>PT. AP I (13 Bandara)</th>
<th>PT. AP II (12 Bandara)</th>
<th>Swasta (4 Bandara)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOR</td>
<td>22 buah</td>
<td>15 buah</td>
<td>13 buah</td>
<td>4 buah</td>
</tr>
<tr>
<td>ILS</td>
<td>2 buah</td>
<td>11 buah</td>
<td>11 buah</td>
<td>-</td>
</tr>
<tr>
<td>NDB</td>
<td>95 buah</td>
<td>14 buah</td>
<td>16 buah</td>
<td>7 buah</td>
</tr>
<tr>
<td>PAPI/ VASI</td>
<td>48 buah</td>
<td>28 buah</td>
<td>21 buah</td>
<td>10 buah</td>
</tr>
<tr>
<td>Radar</td>
<td>-</td>
<td>10 buah</td>
<td>9 buah</td>
<td>-</td>
</tr>
<tr>
<td>Jmi FH</td>
<td>481 jam</td>
<td>521 [am]</td>
<td>488 jam</td>
<td>74 [am]</td>
</tr>
</tbody>
</table>
Pelaksanaan kalibrasi serta intervalnya terhadap fasilitas navigasi penerbangan yang dimiliki PT Angkasa Pura I (Persero), PT Angkasa Pura II (Persero), Unit Pelaksana Teknis (UPT) dapat dilihat pada tabel berikut.

<table>
<thead>
<tr>
<th>BANDARA</th>
<th>FASILITAS</th>
<th>JML</th>
<th>INTERVAL/Th</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP I</td>
<td>ILS</td>
<td>11</td>
<td>3</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>VOR/DME</td>
<td>15</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>VASI / PAPI:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Coincidence ILS</td>
<td>11</td>
<td>3</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>- Stand Alone</td>
<td>17</td>
<td>2</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>NDB</td>
<td>14</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Radar</td>
<td>10</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>AP II</td>
<td>ILS</td>
<td>11</td>
<td>3</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>VOR/DME</td>
<td>13</td>
<td>2</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>VASI / PAPI:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Coincidence ILS</td>
<td>11</td>
<td>3</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>- Stand Alone</td>
<td>10</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>NDB</td>
<td>16</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Radar</td>
<td>9</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>UPT</td>
<td>ILS</td>
<td>2</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>VOR/DME</td>
<td>22</td>
<td>2</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>VASI / PAPI:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Coincidence ILS</td>
<td>2</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>- Stand Alone</td>
<td>46</td>
<td>2</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>NDB</td>
<td>95</td>
<td>1</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Radar</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Sumber: BKFP

PEMBAHASAN

Kalibrasi Peralatan Navigasi Penerbangan di Bandara Soekarno-Hatta

Pada saat ini kondisi penerbangan nasional sedang menjadi perhatian, khususnya terkait dengan keselamatan transportasi udara. Peralatan ukur baik yang terpasang di pesawat untuk memberikan berbagai informasi sebagai input sistem kendali pesawat, maupun alat ukur dan alat uji yang digunakan untuk melakukan pemeriksaan kelaikan terbang merupakan sebagian dari peralatan yang harus dikalibrasi secara berkala.

tidak tepat, begitu pula hembusan angin dan rusaknya peralatan navigasi penerbangan itu sendiri.

Badan usaha bandar udara atau unit penyelenggara bandar udara wajib melakukan perawatan dalam jangka waktu tertentu dengan cara pengecekan, tes, verifikasi dan/atau kalibrasi fasilitas bandar udara untuk mempertahankan (sustainability) kesiapan fasilitas bandar udara. Badan usaha bandar udara atau unit penyelenggara bandar udara yang tidak menyediakan fasilitas bandar udara yang memenuhi persyaratan keselamatan penerbangan, keamanan penerbangan serta pelayanan jasa bandar udara, melakukan perawatan dalam jangka waktu tertentu dengan cara pengecekan, tes, verifikasi dan/atau kalibrasi, tidak meningkatkan kinerja fasilitas, prosedur, dan personel, dan pengoperasian bandar udara yang tidak dilakukan oleh tenaga manajerial yang memiliki kemampuan dan kompetensi operasi dan manajerial bidang teknis dan/atau operasi bandar udara, dikenakan sanksi administratif berupa (a) peringatan, (b) pembekuan sertifikat, dan/atau pencabutan sertifikat bandar udara, Ketentuan lebih lanjut mengenai pengoperasian fasilitas bandar udara serta tata cara dan prosedur penggunaan sanksi administratif diatur dengan Peraturan Menteri Perhubungan.

Di Bandara Soekarno-Hatta terdapat beberapa alat bantu navigasi yang gunanya adalah memberikan panduan kepada pesawat terbang untuk menuju landasan pacu untuk lepas landas dan juga untuk membingungnya ke ujung landasan pacu untuk mendarat.

* Peralatan *Instrument Landing System (ILS)*: Alat ini pun berupa radio pemancar yang biasanya diletakkan persis searah dengan sumbu landasan pacu dengan jarak yang cukup dekat. Dengan pancaran, ILS ini, penerbang menerima sinyal dalam bentuk informasi tentang jarak, sudut pendekatan untuk mendarat dan juga arah yang terfokus kepada ujung dari landasan pacu sampai dengan ketinggian tertentu yang relatif sudah sangat rendah.

Dengan demikian penerbang tetap dapat mengarahkan pesawatnya untuk mendarat walaupun dalam keadaan gelap karena cuaca buruk. Ada beberapa kategori dari ILS ini yang dapat menentukan pesawat terbang sampai dengan ketinggian lebih kurang 100 meter di atas permukaan tanah. Itu adalah dua dari beberapa alat bantu navigasi yang terdapat di bandara berfungsi menentukan pesawat terbang dalam menuju suatu bandara dan juga menentunya ke ujung landasan untuk mendarat.

Sebesar besar akurasi penunjukkan arah dari kedua peralatan tersebut akan sangat bergantung dari kondisi stasiun pemandanya dan juga kondisi dari alat penerima mereka di cockpit pesawat. Karena peralatan ini adalah peralatan yang "high tech", dan tentu saja mahal harganya, maka pemeliharaan dari peralatan tersebut menjadi sangat menentukan apakah alat tersebut bisa diandalkan atau tidak.

Di samping itu, sebagai bagian dari pemeliharaan ada pula kegiatan yang disebut sebagai kalibrasi, yang tujuannya mengecek akurasi penunjukannya. Akurasi penunjukkan akan menentukan apakah pesawat dibimbing tepat menuju
kearah yang digunakan untuk mendarat. Salah satu alat untuk mengecek kalibrasi ini adalah pesawat terbang Kalibrasi. Pesawat terbang Kalibrasi adalah pesawat terbang biasa, yang didalamnya dilengkapi dengan peralatan elektronik yang dapat mengecek apakah VOR dan ILS itu bekerja dengan baik dan memberikan penunjukkan yang tepat. Kalibrasi peralatan ILS dilakukan 31 Maret Tahun 2010 dan kalibrasi berikutnya dilakukan 31 Agustus Tahun 2010 periodynya 6 (enam) bulan sekali.

- Peralatan riaan Directional Beacon (NDB) adalah fasilitas navigasi penerbangan yang bekerja dengan menggunakan frekuensi rendah (low frequency) dan dipasang pada suatu lokasi tertentu di dalam atau di luar lingkungan bandar udara sesuai fungsinya. Peralatan NDB memancarkan informasi dalam bentuk sinyal gelombang radio ke segala arah melalui antena, sinyal akan diterima oleh pesawat udara yang dilengkapi Automatic Direction Finder (ADF) yaitu perangkat penerima NDB yang ada di pesawat udara, sehingga penerbangan dapat mengetahui posisinya (azimuth) relatif terhadap lokasi NDB tersebut. Kalibrasi peralatan NDB dilakukan 18 Juni Tahun 2010 dan kalibrasi berikutnya dilakukan 18 September Tahun 2011 periodynya 6 (enam) bulan sekali.

- Peralatan Distance Measuring Equipment (DME) alat bantu navigasi penerbangan yang berfungsi untuk memberikan panduan/informasi jarak bagi pesawat udara dengan stasiun DME yang dilintasi (slant range distance).

Penempatan DME pada umumnya berpasangan (colocated) dengan VOR atau Glide Path ILS yang ditempatkan di dalam atau di luar lingkungan bandar udara tertantang fungsinya. Adapun perbedaannya hanya pada power output, DME yang berpasangan dengan VOR power outputnya 1000 watt (High Power) sedangkan DME berpasangan dengan ILS power outputnya minimal 100 watt (Low Power). Kalibrasi peralatan DME dilakukan 16 Desember Tahun 2009 dan kalibrasi berikutnya dilakukan 16 Juni Tahun 2010 periodynya 6 (enam) bulan sekali.

- Precision Approach Path Indicator Lights (PAPI) merupakan salah satu alat pendaratan visual yang berfungsi memandu pesawat udara yang akan mendarat dengan memberikan sudut pendaratan yang tepat kepada pesawat udara tersebut.

Untuk landasan pacu yang telah dilengkapi ILS, maka besarnya sudut pendaratan PAPI harus sama dengan sudut pendaratan yang diberikan oleh Glide Slope ILS. Konfigurasi PAPI terdiri dari 4 (empat) unit yang dipasang berjajar pada bahu landasan pada jarak 15 m (± 1 m) dari tepi landasan pacu, selanjutnya jarak antar unit PAPI adalah 9 m (± 1). Keempat unit PAPI tersebut harus dipasang dalam satu garis yang tegak lurus dengan garis tengah landasan pacu.

- Peralatan Radar ATC adalah fasilitas pengamanan penerbangan, Radar ATC terdiri dari 2 (dua) jenis yaitu Primary Surveillance Radar (PSR) dan Secondary Surveillance Radar (SSR) merupakan fasilitas pengamanan penerbangan, keduaanya digunakan oleh pengatur lalulintas udara untuk memantau dan mengatur pergerakan pesawat.

Peralatan Radar ini ditempatkan pada suatu lahan tertentu baik di luar bandar udara maupun di dalam bandar udara, adapun layar tampilan dari Radar tersebut pada umumnya diletakkan di suatu ruangan pengatur lalu lintas udara yang jauh dari peralatan radar tersebut. Ketinggian tower beserta antena tidak menjadi obstacle
bagi kegiatan operasional bandar udara, tetapi dapat memenuhi seluruh kebutuhan operasional pengamatan penerbangan. Ketergantungan bangunan di sekitar antena radar tidak menjadi obstacle bagi pencarian radar. Dari hasil survei lapangan kalibrasi untuk seluruh peralatan Radar masih dalam tahap on request.

Kalibrasi terhadap peralatan/fasilitas navigasi penerbangan seperti ILS, PAPI/VASI, NDB dan Radar di Bandara Soekarno-Hatta khususnya secara umum telah dilakukan kalibrasi secara periodik yaitu 6 (enam) bulan sekali, meskipun masih terdapat peralatan seperti DVOR/DME yang seharusnya bulan Juni Tahun 2010 dilakukan: senyata masih belum dilaksanakan.

Kendala Balai Kalibrasi Peralatan Navigasi Penerbangan Dalam Pelaksanaan Kalibrasi

Balai Kalibrasi Fasilitas Penerbangan masih mengalami keterbatasan untuk memenuhi misi penerbangan kalibrasi seluruh peralatan navigasi tepat waktu disebabkan terbatasnya jumlah SDM teknis operasional, kondisi FIS tidak memadai, 2 Unit Console Litton dalam kondisi Unsuitable dan 2 Unit Console Hunting mengalami penurunan performa. Kelemahan sistem manajerial yang disebabkan jumlah crew tidak sebanding dengan jumlah pesawat, insentif yang tidak kompetitif bagi tenaga ahli operasional, multi tipe sarana kalibrasi menyebabkan biaya operasional tinggi, belum dimilikinya standar mutu kalibrasi dan kerjasama internasional belum dikembangkan.

a. Beban kerja

1) Peralatan VOR : Peralatan VOR yang harus dikalibrasi untuk bandar udara UPT sebanyak 22 buah, PT Angkasa Pura I sebanyak 15 buah, PT Angkasa Pura II sebanyak 13 buah dan bandar udara swasta sebanyak 4 buah.

2) Peralatan ILS : Peralatan ILS yang harus dikalibrasi untuk bandar udara UPT sebanyak 2 buah, PT Angkasa Pura I sebanyak 11 buah dan PT Angkasa Pura II sebanyak 11 buah.

3) Peralatan NDB : Peralatan NDB yang harus dikalibrasi untuk bandar udara UPT sebanyak 95 buah, PT Angkasa Pura I sebanyak 14 buah, PT Angkasa Pura II sebanyak 16 buah dan bandar udara swasta sebanyak 7 buah.

4) Peralatan PAPI/VASI : Peralatan PAPI/VASI yang harus dikalibrasi untuk bandar udara UPT sebanyak 48 buah, PT Angkasa Pura I sebanyak 28 buah, PT Angkasa Pura II sebanyak 21 buah dan bandar udara swasta sebanyak 10 buah.

5) Peralatan Radar : Peralatan Radar yang harus dikalibrasi untuk PT Angkasa Pura I sebanyak 10 buah, PT Angkasa Pura II sebanyak 9 buah.

Jumlah jam untuk bandara UPT 481 jam, bandar udara PT Angkasa Pura I sebanyak 521 jam, PT Angkasa Pura II sebanyak 488 jam dan bandar udara swasta sebanyak 74 jam.

Asumsi waktu kalibrasi menurut Balai Kalibrasi Fasilitas Penerbangan untuk peralatan :
1) VOR/DME jika peralatan sudah tersedia memerlukan waktu kalibrasi sekitar 2 jam dan masa periodenya hingga 180 hari.
2) ILS jika peralatan sudah tersedia memerlukan waktu kalibrasi sekitar 4 jam dan masa periodenya hingga 120 hari.
3) VASI/PAPI jika peralatan sudah tersedia memerlukan waktu kalibrasi sekitar 1 jam dan masa periodenya menyesuaikan alat utama.
4) NDB jika peralatan sudah tersedia memerlukan waktu kalibrasi sekitar 1 jam dan masa periodenya hingga 360 hari.
5) Radar memerlukan waktu kalibrasi sekitar 6 jam dan masa periodeanya hingga 360 hari.

b. Kinerja
1) Bandara PT (Persero) Angkasa Pura I
Peralatan/fasilitas yang dikalibrasi :
- ILS sebanyak 11 buah dengan interval 3 tahun total 33.
- VOR/DME sebanyak 15 buah dengan interval 2 total 30.
- VASI/PAPI untuk Coincidence ILS sebanyak 11 buah dengan interval 3 total 33 dan Stand Alone 17 buah dengan interval 2 total 34.
- NDB sebanyak 14 buah dengan interval 1 total 14 dan
- Radar sebanyak 10 buah dengan interval 1 total 10.

2) Bandara PT (Persero) Angkasa Pura II
Peralatan/fasilitas yang dikalibrasi :
- ILS sebanyak 11 buah dengan interval 3 tahun total 33.
- VOR/DME sebanyak 13 buah dengan interval 2 total 26.
- VASI/PAPI untuk Coincidence ILS sebanyak 11 buah dengan interval 3 total 33 dan Stand Alone 10 buah dengan interval 2 total 20.
- NDB sebanyak 16 buah dengan interval 1 total 16 dan
- Radar sebanyak 9 buah dengan interval 1 total 9.

3) Bandara Unit Pelaksana Teknis (UPT)
Peralatan/fasilitas yang dikalibrasi :
- ILS sebanyak 2 buah dengan interval 3 tahun total 6.
- VOR/DME sebanyak 22 buah dengan interval 2 total 44.
- VASI/PAPI untuk Coincidence ILS sebanyak 2 buah dengan interval 3 total 6 dan Stand Alone 46 buah dengan interval 2 total 92.
- NDB sebanyak 95 buah dengan interval 1 total 95 dan
- Radar sebanyak 1 buah dengan interval 1 total 1.

c. Peralatan/Fasilitas Kalibrasi
Peralatan/fasilitas kalibrasi navigasi penerbangan yang dimiliki oleh Balai Kalibrasi Fasilitas Penerbangan berupa pesawat udara sebagai berikut :
1) Twin Engine Turbofan berjumlah 1 pesawat, Twin Engine Turboprop berjumlah 2 pesawat dan Single Engine Turboprop berjumlah 2 pesawat.
2) Flight Inspection System (Console Avionic) 2 pesawat jenis Litton Flight Inspection System kondisi rusak tidak beroperasi dan pabrik pembuat sudah tutup.

Jurnal Penelitian Perhubungan Udara Vol.36 No.3, September 2010
3) Hunting Flight Inspection System buatan tahun 1996 berjumlah 2 pesawat tipe Portable King Air B200 atau TBM 700 mengalami penurunan kinerja dan pabrik pembuat sudah tutup serta ketersediaan spare part sangat sulit didapat.

4) Aerodata Flight Inspection System buatan tahun 2008 berjumlah 1 pesawat, tipe Fixed Learjet 31a kondisinya baru untuk menggantikan 1 unit console Litton.

5) Aerodata Flight Inspection System buatan tahun 2009 berjumlah 1 pesawat, tipe Fixed King Air B200GT.

Jumlah peralatan/fasilitas kalibrasi masih kurang apabila dibandingkan dengan jumlah bandar udara yang ada di Indonesia. Saat ini, Balai Kalibrasi Fasilitas Penerbangan hanya memiliki dua buah pesawat terbang kalibrasi. Itu berarti untuk melaksanakan kalibrasi peralatan navigasi penerbangan di seluruh Indonesia hanya mengandalkan kepada kesiapan kedua pesawat tersebut.

Permasalahan yang dihadapi Balai Kalibrasi Fasilitas Penerbangan dalam pengadaan pesawat mengandalkan anggaran (DIPA).

d. Tenaga Ahli/SDM Kalibrasi

Untuk melakukannya, kalibrasi peralatan/fasilitas penerbangan dibutuhkan tenaga ahli kalibrasi terdiri dari:

1) Pilot In Command (PIC) berjumlah 2 orang, jumlah ideal menurut CASR 135 adalah 24 orang dan komposisi Crew tiap operasi kalibrasi 1 orang.

2) First Officer (FO) berjumlah 3 orang, jumlah ideal menurut CASR 135 adalah 24 orang dan komposisi Crew tiap operasi kalibrasi 1 orang.

3) Engineer berjumlah 6 orang, jumlah ideal menurut CASR 135 adalah 20 orang dan komposisi Crew tiap operasi kalibrasi 1 orang.

4) Panel Operator (Flight Insp) berjumlah 6 orang, jumlah ideal menurut CASR 135 adalah 8 orang dan komposisi Crew tiap operasi kalibrasi 1 orang.

5) Theodolit Operator berjumlah 7 orang, jumlah ideal menurut CASR 135 adalah 8 orang dan komposisi Crew tiap operasi kalibrasi 1 orang.

6) Assisten Engineer berjumlah 5 orang, jumlah ideal menurut CASR 135 adalah 16 orang dan komposisi Crew tiap operasi kalibrasi 1 orang.

Untuk tenaga ahli kalibrasi masih mengalami kekurangan bila melihat jumlah yang ditetapkan CASR 135.

KESIMPULAN

1. Kalibrasi terhadap peralatan/fasilitas navigasi penerbangan seperti ILS, PAPI/VASI, NDB di Bandara Soekarno-Hatta secara umum telah dilakukan kalibrasi secara periodik yaitu 6 (enam) bulan sekali.

2. Peralatan seperti DVOR/DME yang seharusnya bulan Juni Tahun 2010 dikalibrasi kenyataan masih belum dilaksanakan (over due).

3. Radar yang ada di Bandara Soekarno-Hatta on request (masih menunggu untuk dikalibrasi).

4. Fasilitas kalibrasi penerbangan yang dimiliki balai kalibrasi masih kurang untuk memenuhi kalibrasi seluruh peralatan navigasi penerbangan tepat waktu.

5. Jumlah SDM teknis operasional yang dimiliki balai kalibrasi fasilitas penerbangan masih kurang.
DAFTAR PUSTAKA
Chappy Hakim, Makalah Kembali Ke Jalan Yang Benar, 14 Februari 2009.
Cholid, Christian, Basuki, Adi, Pengertian dan Istilah Penerbangan Sipil, PT Rajagrafindo
Persada, Jakarta.
Standar Nasional Indonesia (SNI 03-7050-2004) Kriteria Penempatan Rambu Udara Tak
Terarah (Non Directional Beacon/NDB).
Standar Nasional Indonesia (SNI 03-7041-2004), Kriteria Penempatan Distance Measuring
Equipment (DME).
Undang-undang Nomor 1 Tahun 2009, Penerbangan.
Peraturan Pemerintah Nomor 3 Tahun 2001, Keamanan dan Keselamatan Penerbangan.
Keputusan Menteri Perhubungan Nomor 69 Tahun 2002, Organisasi dan Tata Kerja Balai
Kalibrasi Fasilitas Penerbangan.

UCAPAN TERIMA KASIH
Penulis mengucapkan terima kasih dengan dibantunya pengumpulan data kepada PT.
(Persero) Angkasa Pura II, Bandara Soekarno Hatta, Para Peneliti di Lingkungan Pusat
Litbang Perhubungan Udara, dan Prof. DR. K. Martono, S.H., LLM. sebagai Mitra Bestari
Warta Ardhha Jurnal Penelitian Perhubungan Udara.

BIODATA PENULIS
*) Rosidin Samsudin, Sarjana Ilmu Politik, Peneliti Pertama Bidang Transportasi Udara
pada Pusat Penelitian dan Pengembangan Perhubungan Udara.

Alamat Kantor : Jl. Merdeka Timur No. 5, Jakarta Pusat.